Matrix assisted laser desorption ionization mass spectrometry imaging identifies markers of ageing and osteoarthritic cartilage
نویسندگان
چکیده
INTRODUCTION Cartilage protein distribution and the changes that occur in cartilage ageing and disease are essential in understanding the process of cartilage ageing and age related diseases such as osteoarthritis. The aim of this study was to investigate the peptide profiles in ageing and osteoarthritic (OA) cartilage sections using matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). METHODS The distribution of proteins in young, old and OA equine cartilage was compared following tryptic digestion of cartilage slices and MALDI-MSI undertaken with a MALDI SYNAPT™ HDMS system. Protein identification was undertaken using database searches following multivariate analysis. Peptide intensity differences between young, ageing and OA cartilage were imaged with Biomap software. Analysis of aggrecanase specific cleavage patterns of a crude cartilage proteoglycan extract were used to validate some of the differences in peptide intensity identified. Immunohistochemistry studies validated the differences in protein abundance. RESULTS Young, old and OA equine cartilage was discriminated based on their peptide signature using discriminant analysis. Proteins including aggrecan core protein, fibromodulin, and cartilage oligomeric matrix protein were identified and localised. Fibronectin peptides displayed a stronger intensity in OA cartilage. Age-specific protein markers for collectin-43 and cartilage oligomeric matrix protein were identified. In addition potential fibromodulin and biglycan peptides targeted for degradation in OA were detected. CONCLUSIONS MALDI-MSI provided a novel platform to study cartilage ageing and disease enabling age and disease specific peptides in cartilage to be elucidated and spatially resolved.
منابع مشابه
Proteomic Changes in the Plasma of Broiler Chickens with Femoral Head Necrosis
Femoral head necrosis (FHN) is a skeletal problem in broiler chickens, where the proximal femoral head cartilage shows susceptibility to separation from its growth plate. The selected birds with FHN showed higher body weights and reduced plasma cholesterol. The proteomic differences in the plasma of healthy and FHN-affected chickens were explored using matrix-assisted laser desorption ionizatio...
متن کاملImaging Matrix Assisted Laser Desorption Ionization Mass Spectrometry: a technique to map plant metabolites within tissues at high spatial resolution.
Imaging Matrix Assisted Laser Desorption Ionization Mass Spectrometry provides a new and powerful tool to analyse the distribution of metabolites within plant tissues. The two matrices alpha-cyano-4-hydroxycinnamic acid (alpha-CHCA) and 9-aminoacridine provide a useful combination that allows the measurement of amino acids, sugars, and phosphorylated metabolites. Results are presented showing t...
متن کاملMatrix-assisted laser desorption ionization-time of flight mass spectrometry is a sensitive and specific method for identification of aerococci.
Conventional methods for the identification of human-pathogenic aerococci to the species level are not reliable. We show that matrix-assisted laser desorption ionization-time of flight mass spectrometry correctly identifies aerococci to the species level and that it can be used to identify aerococci with high specificity in the diagnostic clinical microbiology laboratory.
متن کاملSmall Molecule Drug Imaging of Mouse Tissue by MALDI-TOF/TOF Mass Spectrometry and FTMS
Matrix Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry (MS) with a computer-controlled xy-stage in the ionization source can be used to detect the presence, approximate amount and location of small molecules, lipids, peptides and proteins in tissue samples through in vitro molecular imaging, often referred to as MALDI imaging. Both MALDI Time-of-flight/Time-of-flight (MALDI-TOF/T...
متن کاملApplications of Surface-Enhanced Laser Desorption/Ionization Time-Of-Flight (SELDI-TOF) Mass Spectrometry in Defining Salivary Proteomic Profiles
Recent advancement in mass spectrometry leads us to a new era of proteomic analysis. Human saliva can be easily collected; however, the complexity of the salivary proteome in the past prevented the use of saliva for proteomic analysis. Here we review the development of proteomic analyses for human saliva and focus on the use of a new mass spectrometric technology known as surface-enhanced laser...
متن کامل